Cloud-Native PEGA Architecture
Cloud-Native Architecture Principles
Cloud-native architecture leverages cloud computing capabilities to build scalable, resilient, and manageable applications. For PEGA applications, this involves containerization, microservices decomposition, API-first design, and infrastructure automation.
Key principles include: Containerization for consistent deployment environments, Orchestration for automated scaling and management, Resilience patterns for fault tolerance, Observability for comprehensive monitoring, and Infrastructure as Code for reproducible deployments.
Containerization with Docker
Containerizing PEGA applications involves creating Docker images with optimized layers, managing configuration through environment variables, and implementing security best practices for container deployment.
# Multi-stage Dockerfile for PEGA Application
FROM openjdk:11-jdk-slim as build
WORKDIR /build
# Copy source code and build application
COPY src/ ./src/
COPY pom.xml ./
RUN mvn clean package -DskipTests
# Runtime stage
FROM pegasystems/pega:8.7.2
# Set environment variables
ENV PEGA_HEAP="4096m"
ENV PEGA_DIAGNOSTIC_USER="diagnostic"
ENV JDBC_CONNECTION_POOL_SIZE="50"
# Create application user
RUN groupadd -r pegaapp && useradd -r -g pegaapp pegaapp
# Copy application artifacts
COPY --from=build /build/target/pega-app.ear /opt/pega/deployment/
COPY --from=build /build/config/ /opt/pega/config/
# Copy startup scripts
COPY scripts/startup.sh /opt/pega/bin/
RUN chmod +x /opt/pega/bin/startup.sh
# Configure security
RUN chown -R pegaapp:pegaapp /opt/pega/
USER pegaapp
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
CMD curl -f http://localhost:8080/prweb/PRRestService/ping || exit 1
# Expose ports
EXPOSE 8080 8443
# Start application
CMD ["/opt/pega/bin/startup.sh"]
Kubernetes Orchestration
Kubernetes orchestration for PEGA involves creating deployment manifests, configuring services and ingress controllers, implementing persistent storage, and managing secrets and configuration maps.
# PEGA Application Kubernetes Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: pega-app
namespace: pega-production
labels:
app: pega-app
version: v1.0.0
spec:
replicas: 3
selector:
matchLabels:
app: pega-app
template:
metadata:
labels:
app: pega-app
version: v1.0.0
spec:
serviceAccountName: pega-service-account
securityContext:
runAsNonRoot: true
runAsUser: 1000
fsGroup: 1000
containers:
- name: pega-app
image: registry.company.com/pega-app:v1.0.0
ports:
- containerPort: 8080
name: http
- containerPort: 8443
name: https
env:
- name: PEGA_HEAP
value: "4096m"
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: pega-secrets
key: database-url
- name: DATABASE_USERNAME
valueFrom:
secretKeyRef:
name: pega-secrets
key: database-username
- name: DATABASE_PASSWORD
valueFrom:
secretKeyRef:
name: pega-secrets
key: database-password
resources:
requests:
memory: "2Gi"
cpu: "1"
limits:
memory: "6Gi"
cpu: "2"
livenessProbe:
httpGet:
path: /prweb/PRRestService/ping
port: 8080
initialDelaySeconds: 120
periodSeconds: 30
readinessProbe:
httpGet:
path: /prweb/PRRestService/ping
port: 8080
initialDelaySeconds: 60
periodSeconds: 10
volumeMounts:
- name: pega-config
mountPath: /opt/pega/config
- name: pega-logs
mountPath: /opt/pega/logs
volumes:
- name: pega-config
configMap:
name: pega-config
- name: pega-logs
persistentVolumeClaim:
claimName: pega-logs-pvc
---
apiVersion: v1
kind: Service
metadata:
name: pega-app-service
namespace: pega-production
spec:
selector:
app: pega-app
ports:
- name: http
port: 80
targetPort: 8080
- name: https
port: 443
targetPort: 8443
type: ClusterIP
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: pega-app-ingress
namespace: pega-production
annotations:
nginx.ingress.kubernetes.io/ssl-redirect: "true"
nginx.ingress.kubernetes.io/backend-protocol: "HTTP"
cert-manager.io/cluster-issuer: "letsencrypt-prod"
spec:
tls:
- hosts:
- pega-app.company.com
secretName: pega-tls-secret
rules:
- host: pega-app.company.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: pega-app-service
port:
number: 80
Infrastructure as Code
Infrastructure as Code (IaC) for PEGA deployments uses tools like Terraform, AWS CloudFormation, or Azure Resource Manager to define and manage cloud infrastructure programmatically, ensuring consistent and reproducible deployments.
# Terraform configuration for PEGA on AWS
terraform {
required_version = ">= 1.0"
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 4.0"
}
kubernetes = {
source = "hashicorp/kubernetes"
version = "~> 2.0"
}
}
}
# VPC Configuration
resource "aws_vpc" "pega_vpc" {
cidr_block = "10.0.0.0/16"
enable_dns_hostnames = true
enable_dns_support = true
tags = {
Name = "pega-vpc"
Environment = var.environment
}
}
# EKS Cluster
resource "aws_eks_cluster" "pega_cluster" {
name = "pega-cluster-${var.environment}"
role_arn = aws_iam_role.cluster_role.arn
version = "1.24"
vpc_config {
subnet_ids = aws_subnet.private[*].id
endpoint_private_access = true
endpoint_public_access = true
public_access_cidrs = var.allowed_cidr_blocks
}
encryption_config {
resources = ["secrets"]
provider {
key_id = aws_kms_key.eks_secrets.arn
}
}
depends_on = [
aws_iam_role_policy_attachment.cluster_AmazonEKSClusterPolicy,
]
}
# RDS Database for PEGA
resource "aws_db_instance" "pega_database" {
identifier = "pega-db-${var.environment}"
engine = "postgres"
engine_version = "13.7"
instance_class = var.db_instance_class
allocated_storage = var.db_allocated_storage
max_allocated_storage = var.db_max_allocated_storage
storage_encrypted = true
kms_key_id = aws_kms_key.rds_encryption.arn
db_name = "pegadb"
username = var.db_username
password = var.db_password
vpc_security_group_ids = [aws_security_group.rds.id]
db_subnet_group_name = aws_db_subnet_group.pega_db.name
backup_retention_period = 7
backup_window = "03:00-04:00"
maintenance_window = "sun:04:00-sun:05:00"
skip_final_snapshot = false
final_snapshot_identifier = "pega-db-final-snapshot-${var.environment}"
tags = {
Name = "pega-database"
Environment = var.environment
}
}
# ElastiCache for Session Management
resource "aws_elasticache_cluster" "pega_cache" {
cluster_id = "pega-cache-${var.environment}"
engine = "redis"
node_type = var.cache_node_type
num_cache_nodes = 1
parameter_group_name = "default.redis6.x"
port = 6379
subnet_group_name = aws_elasticache_subnet_group.pega_cache.name
security_group_ids = [aws_security_group.elasticache.id]
tags = {
Name = "pega-cache"
Environment = var.environment
}
}
# Application Load Balancer
resource "aws_lb" "pega_alb" {
name = "pega-alb-${var.environment}"
internal = false
load_balancer_type = "application"
security_groups = [aws_security_group.alb.id]
subnets = aws_subnet.public[*].id
enable_deletion_protection = var.enable_deletion_protection
tags = {
Name = "pega-alb"
Environment = var.environment
}
}
Auto-scaling and Resilience Patterns
Auto-scaling in cloud-native PEGA implementations includes Horizontal Pod Autoscaling (HPA) based on CPU/memory metrics, Vertical Pod Autoscaling (VPA) for right-sizing resources, and Cluster Autoscaling for node management.
# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: pega-app-hpa
namespace: pega-production
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: pega-app
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: Pods
pods:
metric:
name: active_users
target:
type: AverageValue
averageValue: "1000"
behavior:
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 50
periodSeconds: 60
scaleUp:
stabilizationWindowSeconds: 60
policies:
- type: Percent
value: 100
periodSeconds: 30
---
# Pod Disruption Budget
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
name: pega-app-pdb
namespace: pega-production
spec:
selector:
matchLabels:
app: pega-app
minAvailable: 2
---
# Network Policy for Security
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: pega-network-policy
namespace: pega-production
spec:
podSelector:
matchLabels:
app: pega-app
policyTypes:
- Ingress
- Egress
ingress:
- from:
- namespaceSelector:
matchLabels:
name: ingress-nginx
ports:
- protocol: TCP
port: 8080
egress:
- to:
- namespaceSelector:
matchLabels:
name: database
ports:
- protocol: TCP
port: 5432
- to: []
ports:
- protocol: TCP
port: 443
- protocol: TCP
port: 80
Cloud Security and Compliance
Cloud security for PEGA applications involves implementing defense-in-depth strategies, including network security, identity and access management, encryption at rest and in transit, and compliance with industry standards.
Key security patterns include: Pod Security Standards for container security, Service Mesh for encrypted communication, Secrets management with rotation policies, Network policies for micro-segmentation, and Security scanning in CI/CD pipelines.
Cost Optimization and Monitoring
Cloud cost optimization involves right-sizing resources, implementing efficient auto-scaling policies, using spot instances where appropriate, and comprehensive monitoring of resource utilization and costs.
Monitoring strategies include comprehensive observability with metrics, logs, and traces, setting up alerts for performance and cost thresholds, and implementing capacity planning based on usage patterns.
Test Your Knowledge
Take the interactive quiz to reinforce what you've learned in this lesson.